Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (7): 22-29.doi: 10.3969/j.issn.2097-0706.2023.07.003
• Integrated Energy System • Previous Articles Next Articles
LI Yizhea(), WANG Dana,b,*(
), JIA Hongjiea,b, ZHOU Tianshuoa, CAO Yitaoa, ZHANG Shuaia, LIU Jiaweia
Received:
2023-05-17
Revised:
2023-06-19
Accepted:
2023-07-25
Published:
2023-07-25
Supported by:
CLC Number:
LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications[J]. Integrated Intelligent Energy, 2023, 45(7): 22-29.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.07.003
Table 1
Comparative analysis on multi-factor energy hub models and their key features
要素 | 模型类别 | 特征与共性 | 应用价值 |
---|---|---|---|
能量 | 传统能量枢纽能量模型 | 非线性方程, 内部抽象化 | 提升供需匹配经济性、安全性、可靠性、灵活性 |
基于状态参数矩阵能量枢纽能量模型 | 线性方程, 内部部分描述 | ||
基于标准化矩阵的能源枢纽能量模型 | 线性方程, 内部完整描述 | ||
㶲 | 传统能量枢纽有效能模型 | 非线性方程, 二端口抽象化 | 提升品质能源利用效率,有助于量、质协同优化 |
基于标准化矩阵能量枢纽有效能模型 | 线性方程, 内部完整描述 | ||
熵增 | 大节点型能量枢纽熵态模型 | 线性方程, 忽略内部结构 | 传统能源与可再生能源协同、高质量供能 |
基于标准化矩阵能量枢纽熵态模型 | 线性方程, 内部完整描述 | ||
碳排放 | 无损的能量枢纽碳排放模型 | 线性方程, 内部部分描述 | 有助于科学、合理地促进低碳转型 |
有损大节点型的能量枢纽碳排放模型 | 线性方程, 忽略内部结构 | ||
有损矩阵型能量枢纽碳排放模型 | 非线性方程, 二端口抽象化 |
[1] | 贾宏杰, 王丹, 徐宪东, 等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015, 39(7): 198-207. |
JIA Hongjie, WANG Dan, XU Xiandong, et al. Research on some key problems related to integrated energy systems[J]. Automation of Electric Power Systems, 2015, 39(7): 198-207. | |
[2] | GridLAB-D. The next-generation simulation software[EB/OL].(2023-02-19)[2023-05-15]. http://www.gridlabd.org/. |
[3] | 王英瑞, 曾博, 郭经, 等. 电-热-气综合能源系统多能流计算方法[J]. 电网技术, 2016, 40(10): 2942-2951. |
WANG Yingrui, ZENG Bo, GUO Jing, et al. Multi-energy flow calculation method for integrated energy system containing electricity, heat and gas[J]. Power System Technology, 2016, 40(10): 2942-2951. | |
[4] |
UMBERTO L. Entropy and exergy in irreversible renewable energy systems[J]. Renewable and Sustainable Energy Reviews, 2013, 20: 559-564.
doi: 10.1016/j.rser.2012.12.017 |
[5] | 李家熙, 王丹, 周天烁, 等. 面向综合能源系统的㶲流计算模型[J]. 电力系统自动化, 2022, 46(24): 45-56. |
LI Jiaxi, WANG Dan, ZHOU Tianshuo, et al. Exergy flow calculation model for integrated energy system[J]. Automation of Electric Power Systems, 2022, 46(24): 45-56. | |
[6] | 李家熙, 王丹, 贾宏杰, 等. 面向可再生能源接入的综合能源系统熵态机理和分析方法[J]. 电力系统自动化, 2022, 46(12): 163-173. |
LI Jiaxi, WANG Dan, JIA Hongjie. Exergy flow mechanism and analysis method for integrated energy system[J]. Automation of Electric Power Systems, 2022, 46(12): 163-173. | |
[7] | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”:科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833. |
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833. | |
[8] |
MAHIAN O, MIRZAIE R, KASAEIAN A, et al. Exergy analysis in combined heat and power systems: A review[J]. Energy Conversion and Management, 2020, 226: 113467.
doi: 10.1016/j.enconman.2020.113467 |
[9] |
ZHANG X, SHAHIDEHPOUR M, ALABDULWAHAB A, et al. Optimal expansion planning of energy hub with multiple energy infrastructures[J]. IEEE Transactions on Smart Grid, 2015, 6(5): 2302-2311.
doi: 10.1109/TSG.2015.2390640 |
[10] | LI J, WANG D, JIA H, et al. Exergy hub: A novel energy hub model considering energy quality[C]// 2022 IEEE Power & Energy Society General Meeting(PESGM). Denver, USA, 2022:1-5 |
[11] | 曹逸滔, 王丹, 贾宏杰, 等. 考虑多能碳流约束的区域综合能源系统双层博弈扩展规划[J]. 电力系统自动化, 2023, 47(7): 12-22. |
CAO Yitao, WANG Dan, JIA Hongjie, et al. Bilevel Nash-Stackelberg game expansion planning of regional integrated energy system considering multi-energy carbon flow constraints[J]. Automation of Electric Power Systems, 2023, 47(7): 12-22. | |
[12] | 王丹, 周天烁, 李家熙, 等. 面向能源转型的高㶲综合能源系统理论与应用[J]. 电力系统自动化, 2022, 46(17): 114-131. |
WANG Dan, ZHOU Tianshuo, LI Jiaxi, et al. Theory and application of high-exergy integrated energy system for energy transition[J]. Automation of Electric Power Systems, 2022, 46(17): 114-131. | |
[13] | 倪伟, 吕林, 向月, 等. 基于机会约束规划的能源集线器系统气电购置优化建模[J]. 电网技术, 2018, 42(8): 2477-2487. |
NI Wei, LinLÜ, XIANG Yue, et al. Optimal gas-electricity purchase model for energy hub system based on chance-constrained programming[J]. Power System Technology, 2018, 42(8): 2477-2487. | |
[14] |
WANG Y, CHENG J, ZHANG N, et al. Automatic and linearized modeling of energy hub and its flexibility analysis[J]. Applied Energy, 2018, 211: 705-714.
doi: 10.1016/j.apenergy.2017.10.125 |
[15] |
WANG Y, ZHANG N, KANG C, et al. Standardized matrix modeling of multiple energy systems[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 257-270.
doi: 10.1109/TSG.2017.2737662 |
[16] |
LI J, WANG D, JIA H, et al. Mechanism analysis and unified calculation model of exergy flow distribution in regional integrated energy system[J]. Applied Energy, 2022, 324: 119725.
doi: 10.1016/j.apenergy.2022.119725 |
[17] | 李家熙, 王丹, 贾宏杰. 面向综合能源系统的㶲流机理与分析方法[J]. 电力系统自动化, 2022, 46(12): 163-173. |
LI Jiaxi, WANG Dan, JIA Hongjie. Exergy flow mechanism and analysis method for integrated energy system[J]. Automation of Electric Power Systems, 2022, 46(12): 163-173. | |
[18] |
HU X, ZHANG H, CHEN D, et al. Multi-objective planning for integrated energy systems considering both exergy efficiency and economy[J]. Energy, 2020, 197: 117155.
doi: 10.1016/j.energy.2020.117155 |
[19] |
王芸芸, 马志程, 周强, 等. 计及公平性的多能合作博弈鲁棒优化调度[J]. 综合智慧能源, 2023, 45(2): 10-21.
doi: 10.3969/j.issn.2097-0706.2023.02.002 |
LI WANG Yunyun, MA Zhicheng, ZHOU Qiang, et al. Robust optimal scheduling of multi-energy cooperative game considering fairness[J]. Integrated Intelligent Energy, 2023, 45(2): 10-21.
doi: 10.3969/j.issn.2097-0706.2023.02.002 |
|
[20] |
侯鲁洋, 葛磊蛟, 王飚, 等. 面向新型产消者的综合能源系统和电力市场研究[J]. 综合智慧能源, 2022, 44(12):40-48..
doi: 10.3969/j.issn.2097-0706.2022.12.006 |
HOU Luyang, GE Leijiao, WANG Biao, et al. Research on the integrated energy system and the electricity market towards new prosumers[J]. Integrated Intelligent Energy, 2022, 44(12): 40-48.
doi: 10.3969/j.issn.2097-0706.2022.12.006 |
|
[21] |
LEI Yang, WANG Dan, JIA Hongjie, et al. Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy[J]. Applied Energy, 2020, 276: 115395.
doi: 10.1016/j.apenergy.2020.115395 |
[1] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[2] | LI Feifei, WANG Shuhong, CUI Jindong. Study on influencing factors of automobile carbon emissions from the perspective of whole life cycle: A case study of Jilin Province [J]. Integrated Intelligent Energy, 2024, 46(8): 20-27. |
[3] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[4] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[5] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[6] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[7] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[8] | SHI Mingming, ZHU Rui, LIU Ruihuang. Joint economic dispatch of an AC/DC power system and a heating system [J]. Integrated Intelligent Energy, 2024, 46(4): 10-16. |
[9] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[10] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[11] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
[12] | WANG Yongli, WANG Yanan, MA Ziben, QIN Yumeng, CHEN Xichang, TENG Yue. Effectiveness evaluation on energy trading systems taking blockchain technology [J]. Integrated Intelligent Energy, 2024, 46(4): 78-84. |
[13] | XU Cong, HU Yongfeng, ZHANG Aiping, YOU Changfu. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening [J]. Integrated Intelligent Energy, 2024, 46(3): 45-53. |
[14] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[15] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||